

Return your solutions to the Moodle submission folder by 15:00.

1. Let the random variable X be continuously distributed with the probability density function f_{X}. Derive the probability density function f_{Y} of the random variable $Y=|X-1|$. If $X \sim$ $U(-1,0)$, what is the distribution of Y ?
2. Let X_{1} and X_{2} be independent random variables with

$$
E X_{1}=2, \quad E X_{2}=-1, \quad \operatorname{var} X_{1}=1 \quad \text { and } \quad \operatorname{var} X_{2}=2 .
$$

Define

$$
Y=2-X_{1}+2 X_{2} \quad \text { and } \quad Z=-3+2 X_{1}-X_{2} .
$$

Calculate $E Y, E Z, \operatorname{var} Y, \operatorname{var} Z$ and $\operatorname{cov}(Y, Z)$.
3. Let $X \sim U(-1,1)$ and Y be a random variable with $P(Y=-1)=P(Y=1)=\frac{1}{2}$. Prove that if $X \Perp Y$, then $X+Y \sim U(-2,2)$. Hint: Moment generating functions. If you have difficulties to begin with your solution, search the formula for the moment generating function of the uniform distribution from the web, and then derive the formula in the case $X \sim U(-1,1)$.
4. Prove that the events A and B are independent if and only if $\operatorname{cov}\left(\mathbf{1}_{A}, \mathbf{1}_{B}\right)=0$.

