
UH Stochastic analysis I, Spring 2018, Home Exam

To be returned before June 4th 2018.
The second part of the course, Stochastic Analysis II, will start on tues-

day 13.3. The lecture scheduled for monday 12.3 is moved to wednesday 14.3,
at 10.15 in lecture room B120.

We recall the integration by parts formula for cadlag functions with finite
variation:

X(t)Y (t)−X(0)Y (0) =

∫ t

0

X(s)Y (ds) +

∫ t

0

Y (s−)X(ds) = (0.1)∫ t

0

X(s−)Y (ds) +

∫ t

0

Y (s)X(ds)

=

∫ t

0

X(s−)Y (ds) +

∫ t

0

Y (s−)X(ds) + [X, Y ]t

where [X, Y ]t =
∑

s≤t ∆X(s)∆Y (s) is the cross variation.

For cadlag functions X(t) with finite variation on compacts and differen-
tiable functions f(x), we have the change of variable formula

f(Xt)− f(X0) =

∫ t

0

∂f

∂x
(X(s))X(ds) +

∑
s≤t

(
f(X(s))− f(X(s−))− ∂f

∂x
(X(s−))∆X(s)

)
.

(0.2)

Recall also that if Y (t) is a F-adapted cadlag process with integrable
variation on compact intervals

E(VarY (t)) = E

(∫ t

0

|Y (ds)|
)
<∞∀t,

then its dual F-predictable projection Y p (which is also called the compen-
sator of Y exists and M(t) := (Y (t)− Y p(t)) is a F-martingale.

This follows X(t) is F-predictable and

E

(∫ t

0

|X(s)| |Y (ds)|
)
<∞∀t,

then by definition of dual predictable projection

E

(∫ t

0

X(s)Y (ds)

)
= E

(∫ t

0

X(s)Y p(ds)

)
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In particular for X(t, ω) = 1F (ω)1(u,v](t) for arbitrary F ∈ Fu and 0 ≤ u ≤ v
which is a simple bounded left-continuous F-adapted process it implies

0 = E

(∫ t

0

X(s)M(ds)

)
= E

((
M(v)−M(u)

)
1F

)
which is equivalent to the martingale property E(Mv|Fu

)
= Mu.

(X · Y )p =

(∫ ·
0

X(s)Y (ds)

)p
=

∫ ·
0

X(s)Y p(ds)

and

(X ·M)t =

∫ t

0

X(s)M(ds) =

∫ t

0

X(s)Y (ds)−
∫ t

0

X(s)Y p(ds).

is a F-martingale. Note also that if X(s) is a cadlag F-adapted process, it is
F-optional and its left limit X(s−) = limr↑sX(r) is F-predictable.

Problems

1. (Discrete time embedded into continuous time). Consider in discrete
time a process (Xn : n ∈ N), and a discrete filtration, (Fn : n ∈
N), where Xn in not necessarily {Fn}-measurable. Assume that X is
integrable or more in general locally integrable in the filtration (Fn)n∈N.

We imbed the discrete time processes and filtrations, into continous
time processes X(t) and filtration F = {Ft : t ≥ 0) which are right-
continuous, and piecewise constant between the jump times n ∈ N:

Ft = Fn and X(t, ω) = Xn(ω) ∀t ∈ [n, n+ 1),

Use the definition to show that in continuous time, the F-optional and
F-predictable projections of the imbedded process X are respectively

oX(t) = E
(
Xn

∣∣Fn) t ∈ [n, n+ 1) and pX(t) = oX(t) if t 6∈ N, and pX(n) = E
(
Xn

∣∣Fn−1)
Show that the dual F-optional projection of X is

Xo
t =

∑
0≤n≤t

E
(
Xn −Xn−1

∣∣Fn) =
∑
0≤s≤t

E
(
∆X(s)|Fs)

and the dual F- predictable projection is

Xp
t =

∑
0≤n≤t

E
(
Xn −Xn−1

∣∣Fn−1) =
∑
0≤s≤t

E
(
∆X(s)|Fs)− =

∑
0≤s≤t

lim
r↑s

E
(
∆X(s)|Fr)
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2. Consider a Bernoulli counting process in the discrete time filtration
{Fk : k ∈ N}

N(k) =
k∑
i=1

Xk(ω)

where

P
(
Xi = 1

∣∣Fi−1)(ω) = 1− P
(
Xi = 1

∣∣Fi−1)(ω) = p ∈ (0, 1)

• Imbed now the Bernoulli processN and the filtration in continuous
time, and compute the projections oN, pN,N o, Np.

• For a > 0 show that

aNn = 1 +
n∑
j=1

(a− 1)aNj−1∆Nj.

compute its martingale decomposition to compute its dual predic-
table projection and use it to compute EaNn .

3. A stochastic process X(t) is stochastically continuous, if for each t and
ε > 0:

lim
h→0

P{|Xt+h −Xt| > ε} = 0.

Show that the Bernoulli process (imbedded to continuous time) is not
stochastically continuous.

4. Show that any increasing process X, Xt ∈ L(P ), such that the expec-
tation map t 7→ EXt is continuous, is stochastically continuous. Show
that the Poisson process on R+ is stochastically continuous.

5. A piecewise constant cadlag process N(t) with N(0) = 0 and ∆N(t) ∈
{0, 1} ∀t is called a counting process.

(a) For the next questions we assume that N is F-adapted and

P (Nt <∞) = 1 ∀t ≥ 0.

Show that an F-adapted counting process is locally bounded. Hint:
find a sequence of stopping times τn(ω) ↑ ∞ such that Nτn∧t(ω) ≤
Cn ∀ω, t, with constants Cn <∞.

(b) Assume that N is F-adapted and P (Nt <∞) = 1, and show that
the dual predictable projection Np exists, and

∆Np(t) =
(
Np(t)−Np(t−)

)
∈ [0, 1].
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(c) Show also that

P{Nt ≥ ε} ≤ ENp
t ,∀ ε > 0.

(d) Prove that N(t) is stochastically continuous if and only if t 7→ Np
t

is continuous.

6. Assume that (Yk)k ≥ 1, with Y0 = 0, is a sequence of independent
Bernoulli random variables with parameter pk: P{Yk = 1} = pk. Define
a counting process N on [0, 1) by

Nt
.
=

b 1
1−t
−1c∑

k=0

Yk

and put N1 = limt→1Nt. Show that the process N is non-exploding at
the time t = 1 if and only if

∑
k pk <∞. Non-exploding: P (N1 <∞) =

1. Show also that if N is non-exploding at t = 1, then EN1 <∞.

7. Assume that F is continuous and f is right-continuous with bounded
variation. Show that t 7→ F (f(t)) is right-continuous. If F ∈ C1, i.e. F
is differentiable with a continuous derivative, then F ◦ f has bounded
variation on compacts

8. Let N(t) be a Poisson process with intensity λ > 0, with cadlag trajec-
tories and a filtration F = (Ft : t ≥ 0) such that M(t) = (N(t)− λt) is
a F-martingale.

(a) What are the F-optional and F-predictable projections oN and
pN ?

(b) Show that N(t) has dual F-optional and dual F-predictable pro-
jections, find N o and Np.

9. We compute the Laplace transform of the λ-Poisson process using mar-
tingales.

For θ > 0 let f(x) = exp(−θx), and use the change of variable for-
mula for cadlag functions X(t) with finite variation on compacts and
differentiable f(x)

f(Xt)− f(X0) =

∫ t

0

∂f

∂x
(X(s))X(ds) +

∑
s≤t

(
f(X(s))− f(X(s−))− ∂f

∂x
(X(s−))∆X(s)

and a martingale argument to compute the Laplace transform θ 7→
E
(
exp(−θN(t))

)
, θ > 0 of the λ-Poisson process N(t).
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10. A theorem by Thomas Kurtz In this exercise we use a martingale
argument together with the change of variable formula (0.2) to compute
Laplace transforms.

Let τ1, . . . τm F-stopping times, and let Nj(t) = 1(τj ≤ t). Let Λj = Np
j ,

the compensator or dual F-predictable projection of Nj (which exists,
why ?)

We assume that

P (τi = +∞) = P (τi = τj) = 0 ∀i 6= j

and that the compensators Λj(t) are continuous processes.

We show that the stopped compensators Λ1(τ1), . . . ,Λm(τ1) are i.i.d.
1-exponential random variables, i.e.

P
(
Λ1(τ1) > x1, . . . ,Λ1(τ1) > xn

)
= exp

(
−

m∑
j=1

xj

)
, xj > 0

In order to show it we compute the joint Laplace transform of Λτ1 , . . .Λτm

and show that for ∀θj > 0

E

(
exp

(
−

m∑
j=1

θ1Λj(τi)

))
=
∏
j

1

(1 + θj)
(0.3)

which is the product of the Laplace transform of i.i.d. 1-exponential
random variables.

(a) Use the change of variable formula to write an integral represen-
tation of

ζj(θj, t) = (1 + θj)
Nj(t) exp

(
−θjΛj(t)

)
and show that if θj > 0, ζj(t) is an uniformly integrable F -
martingale.

(b) Show that

[ζi(θi), ζj(θ)]t =
∑
s≤t

∆ζi(θi, s)∆ζj(θj, s) = 0 ∀i 6= j

Hint:

[Ni, Nj]t =
∑
s≤t

∆Ni(t)∆Nj(t) = 0 ∀i 6= j
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(c) Use the integration by part formula for product of finite variation
processes, to find an integral representation for the product

Z(θ, t) =
m∏
j=1

ζj(θj, t)

and show that ∀θ = (θ1, . . . , θm) ∈ Rm
+ , Z(θ, t) is also an uniformly

integrable martingale.

(d) Compute E
(
Z(θ,∞)

)
to prove (0.3)
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