
Stochastic analysis I, Fall Semester, Home Exam

1. Show that for a standard Gaussian random variable G, the Gaussian in-
tegration by part formula EP (f(G)G) = EP (f

′(G)) is valid also for the
step function f(x) = 1(x > t), with derivative f ′(x) = δt(x) = δ0(x − t)
is a distributional derivative . is not a function but a generalized function
(a distribution in analysis language), the Dirac-delta function at t, with
the defining property

g(t) =

∫
R
g(x)δt(x)dx =

∫
R
g(x)δ0(x− t)dx =

∫
R
g(y + t)δ0(y)dy

for any continuous test function g with compact support. From the proba-
bilistic point of view the measure µ(dx) = δt(x)dx is simply the probability
measure of a deterministic random variable concentrated in the singleton
{t}.
Hint. In order show that the integration by parts formula is correct also
in this case, approximate the indicator f(x) = 1(x > t) by the sequence
fn(x) =

(
(x− t)+n)∧ 1 which satisfies 0 ≤ fn(x) ≤ f(x) ≤ 1 ∀x, and it is

piecewise linear with derivative f ′n(x) = n1
(
t < x ≤ t+ 1/n

)
. Apply the

Gaussian integration by parts to fn(x) and use the dominated convergence
Theorem to take limits, together with continuity property of the Gaussian
density.

2. For t ∈ R compute the expectations:

(a) EP

(
G1(G > t)

)
(b) EP

(
G1(G ≤ t)

)
(c) EP

(
G21(G > t)

)
(d) EP

(
G21(G ≤ t)

)
(e) EP

(
G31(G > t)

)
(f) EP

(
G31(G ≤ t)

)
(g) EP

(
G41(G > t)

)
(h) EP

(
G41(G ≤ t)

)
Hint: Justify taking the distributional derivative of the indicator in the
integration by parts formula.

3. We recall that a compound Poisson process is a Lévy process with finitely
many jumps on finite intervals. Let X(t) be a compound Poisson process
with intensity λ > 0 where the jumps are standard Gaussian random
variables.

(a) Write the Lévy measure of X(t).

(b) Write the Lévy Khinchine formula for the characteristic function of
X(t).

(c) Show that X(t) is a martingale in its own filtration.

(d) Show that M(t) = (X(t)2 − λt) is a martingale in the filtration
generated by the X(t) process.

(e) Can we say that X(t) a Gaussian process ? (justify your answer)

(f) Show that X(t) is a conditionally Gaussian process conditionally on
its jump times.

(g) Compute the moments E(X(t)k), k ∈ N.
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(h) Given 0 = t0 < t1 ≤ t2 · · · ≤ tn compute also the joint moment

E
(
X(t1)X(t2) . . . X(tn)

)
4. Show that if X(t) is the compound Poisson process with intensity λ and

standard Gaussian jumps given above, the process Xa,b(t) = bX(at) is a
compound Poisson process with intensity aλ and the jumps have Gaussian
distribution with zero mean and variance b2.

5. Now consider the truncated series

Y (m)(t) =

m∑
n=1

bnX
(n)(ant)

and their limit

Y (t) =

∞∑
n=1

bnX
(n)(ant)

where X(n)(t) are independent copies of the compound Poisson process
with standard Gaussian jumps above, and 0 < an → +∞, and bn → 0 are
deterministic sequences.

(a) Under which conditions on (an) and (bn) the series converges to the
process Y (t) P-almost surely to a Lévy process with finite variation
on finite intervals ?

(b) Write the Lévy-Khinchine formula for the characteristic function of
Y (t).

(c) Under which conditions on (an) and (bn) the process Y (t) has square
summable jumps and the series converges in L2(P ) to a Lévy process
with quadratic variation ?

(d) Write the Lévy Khinchine formula for the characteristic function of
Y (t) also in this case, and the Lévy Khinchine formula for the char-
acteristic function the quadratic variation [Y, Y ]t.

6. We assume that the arrival times of the busses at the Kumpula campus
bus-stop form an homogeneous Poisson process on R with intensity λ > 0.
Passengers arriving to the bus-stop as an homogeneous Poisson process
with intensity ν > 0. What is the distribution of the waiting time to the
next bus for a passenger arriving to the bus-stop ?
Let C(t) be the number of passengers waiting for the bus at time t.
A bus can take at most m passengers. Assuming hypothetically that
our bus-stop would be the first on the bus-transport line, and all busses
arriving to the bus-stop are empty, compute the expectation E

(
C(t)∧m

)
at any fixed time t in the stationary regime (the system is stable for ν
large enough, you can also show that when ν is too small the number of
passengers waiting the bus will grow to infinity in the long run).
Hint.

C(t) = C(0) +N(t)−
∫ t

0

(
C(s−) ∧m

)
B(ds)
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where N(t) is the λ-Poisson process counting the arrival of passengers to
the bus-stop and B(t) is the ν-Poisson process counting the arrivals of the
busses. In the stationary regime E(C(t)) is constant at all fixed times t.

7. Let τ be a random arrival time of a bus. At stationarity, does the distri-
bution of C(τ) differs from the distribution of C(t) at a pre-fixed time t ?
(explain).

Let W (0) be random time a passenger arriving at time 0 has wait at the
bus-stop before catching the bus. Note that in case more than m passen-
gers are waiting he/she may not necessarily fit in the first bus arriving
but he/she may need to wait further until he/she can fit into the bus. Use
Little formula (Section 2.4) from the lecture notes to relate the expecta-
tion E

(
C(t)

)
to the the expectation E0

(
W (0)

)
with respect to the Palm

measure conditioned on a passenger arriving at time 0.
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