
Stochastic analysis I, Home Exam, Fall Semester 2020
To be returned by 18.12.2020. You can use the course materials and any book

or paper you may find relevant, you can also collaborate with fellow students,
and ask the teacher for explanations and hints.

1. Consider a two-dimensional pure-jump Lévy processX(t) = (X1(t), X2(t)),
with Lévy measure on R+ × R
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with α, β > 0, where you recognize the Lévy measure of the Gamma
process for the first component times a conditional zero mean Gaussian
distribution for the second component.

(a) Use the Lévy Khinchine formula to compute the characteristic func-
tion of X(t)

E
(
exp(iθ ·X(t))

)
, θ ∈ R2

(b) Compute the Laplace transform of X1(t) and the Fourier transform
of X2(t).

(c) Compute E(Xk(t)), k = 1, 2.

(d) Show that P-almost surely X(t) has finite total variation on finite
intervals, equivalently both components X1(t) and X2(t) have finite
total variation on finite intervals.

(e) Compute the expectation of the total variation of Xk in an interval
[0, t], k = 1, 2.

(f) Compute the expectation of the quadratic covariation matrix E
(
[Xk, X`]t)

1 ≤ k, ` ≤ 2.

(g) Compute joint quadratic moments

E
(
Xk(t)X`(s)

)
t ≥ s ≥ 0, 1 ≤ k, ` ≤ 2.

2. In this problem we introduce and study in several steps iterated integrals
with respect to the Poisson process N and the compensated Poisson pro-
cess N̄ = (N−ν). The main idea is to use the Palm measure of the Poisson
process when we have to compute expectations of iterated integrals and
of their squares.

Finally we establish also an isometry with the iterated Wiener integrals
with respect to the Gaussian white noise. Answering the questions marked
by ∗ and ∗∗ is not required for passing the exam. On the other hand it
would be good if you could make an additional effort to see the full picture.

Let ν(dt) be a σ-finite measure on a Borel space (T,B), to fix the ideas if
you want you can assume that T = Rd the euclidean space equipped with
its Borel σ-algebra.
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(a) For a non-negative and jointly measurable function f(t1, . . . , tn) on
the n-fold product of measurable spaces (Tn,B⊗n), prove that∫
Tn

f(t1, . . . , tn)ν(dt1) . . . ν(dtn) =

∫
Tn

f̃(t1, . . . , tn)ν(dt1) . . . ν(dtn)

where the normalized sum over the permutations π of {1, 2, . . . , n}

f̃(t1, . . . , tn) =
1

n!

∑
π

f(tπ(1), . . . , tπ(n))

is called the symmetrization of f .
(b) Let Dn = {t = (t1, . . . , tn) ∈ Tn : ∃j < k with tj = tk} be the

diagonal set in the product space Tn. From now on we assume that
the measure ν is σ-finite and non-atomic, ν({t}) = 0 ∀t ∈ T.
Prove that Dn ∈ B⊗n.

(c) Prove that∫
Tn

f(t1, . . . , tn)ν(dt1) . . . ν(dtn) =

∫
Tn\Dn

f(t1, . . . , tn)ν(dt1) . . . ν(dtn)

or alternatively that ν⊗n(Dn) = 0 under the product measure ν⊗n =
ν ⊗ ν ⊗ · · · ⊗ ν︸ ︷︷ ︸

n times

.

Hint Since T is a Borel space, it admits a measurable bijection with
measurable inverse with a measurable subset of the unit interval,
you can work with T = [0, 1] and B is the Borel σ-algebra, which is
generated by the dyadic intervals.

(d) Let N(dt, ω) be a Poisson process driven by a σ-finite non-atomic
measure ν(dt) on the measurable space (T,B), and f(t1, . . . , tn) non-
negative and jointly measurable function.

(e) Show that the iterated integral with respect to the Poisson process
is well-defined:∫

Tn

f(t1, t2, . . . , tn)N(dt1)N(dt2) . . . N(dtn)

Compute

E
(∫

Tn

f(t1, t2, . . . , tn)N(dt1)N(dt2) . . . N(dtn)

)
Hint: You can start with n = 2, using the Palm probability of the
Poisson process. You can also replace f by its symmetrization f̃ (why
?). What happens on the diagonals, at points t with tj = tk for some
k 6= j ?

(f) Show also that for R-valued f ∈ L1(Tn, ν⊗n)

E
(∫

Tn\Dn

f(t1, t2, . . . , tn)N̄(dt1)N̄(dt2) . . . N̄(dtn)

)
= 0

where N̄(B) = N(B)− ν(B) is the compensated Poisson process.
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(g) Let N(dt, ω) be a Poisson process on the unit interval T = [0, 1]
driven by the Lebesgue measure ν(dt) = dt.
For which α ∈ R∫ 1

0

∫ 1

0

|t− s|αN(dt)N(ds) <∞ P-almost surely ?

(h) For such α compute also the expectation

E
(∫ 1

0

∫ 1

0

|t− s|αN(dt)N(ds)

)
(i) For which β ∈ R∫

[0,1]2\D2

|t− s|βN(dt)N(ds) <∞ P-almost surely ?

(j) For such β, compute the expectation

E
(∫

[0,1]2\D2

|t− s|βN(dt)N(ds)

)
(k) We want now to define iterated L2-integrals w.r.t. the compensated

Poisson process. The first step is the case with n = 2, and use again
the Palm measure to compute the squared L2 norm

E
({∫

T2\D2

f(s, t)N̄(ds)N̄(dt)

}2)
=

= E
(∫

T2\D2

∫
T2\D2

f(s, t)f(u, v)N̄(ds)N̄(dt)N̄(du)N̄(dv)

)
when f(s, t) is both in L1(T2,B⊗2) ∩ L2(T2,B⊗2)

Note that the inclusion (T2 \D2)× (T2 \D2) ) T4 \D4 is strict.
(l) For which γ ∈ R the iterated L2 integral below with respect to the

compensated Poisson process N̄(B,ω) = N(B,ω)−|B| withN driven
by the Lebesgie measure is well defined ?∫

[0,1]2\D2

|t− s|γN̄(dt)N̄(ds)

(m) For such γ, compute the squared L2-norm

E
({∫

[0,1]2\D2

|t− s|γN̄(dt)N̄(ds)

}2)
(n) ∗ When needed you may use the approximation lemma below.

Lemma ∀f(t1, . . . , tn) ∈ L2(Tn, ν⊗n) there exists a sequence

f (m)(t1, . . . , tn) =

Km∑
`=1

g
(m,`)
1 (t1)g

(m,`)
2 (t2) . . . g(m,`)n (tn) m ∈ N
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and f (m) ∈ L1(Tn, ν⊗n)∩L2(Tn, ν⊗n) ∀m ∈ N such that f (m) −→ f

in L2(Tn, ν⊗n). Also if necessary we can choose g(m,`)j (tj) to be sim-
ple measurable functions taking finitely many values with supports
of finite ν-measure.

Show that for f(t1, . . . , tn) ∈ L2(Tn, ν⊗n) the iterated L2-integral
w.r.t. the compensated Poisson process N̄∫

Tn\Dn

f(t1, . . . , tn)N̄(dt1) . . . N̄(dtn) =

= lim
m→∞

∫
Tn\Dn

f (m)(t1, . . . , tn)N̄(dt1) . . . N̄(dtn)

is well defined as a limit in L2(P), meaning that the L2(P) limit
exists and it does not depend on the approximating sequence.
Hint Continue by induction on n the proof from the case with n = 2.

(o) ∗ Compute also the squared L2(P)-norm of the iterated integral

E
({∫

Tn\Dn

f(t1, t2, . . . , tn)N̄(dt1)N̄(dt2) . . . N̄(dtn)

}2)
Hint: consider first the case with n = 2, and use again the Palm
measure to compute

E
(∫

T2\D2

∫
T2\D2

f(s, t)f(u, v)N̄(ds)N̄(dt)N̄(du)N̄(dv)

)
Note that the inclusion (T2 \D2)× (T2 \D2) ) T4 \D4 is strict.
Hint Continue by induction on n the proof from the case with n = 2.

(p) ∗∗ We can follow the same path we followed to define the iterated
integrals w.r.t. N̄ , to define the iterated Wiener integral with respect
to the Gaussian white noise∫

Tn\Dn

f(t1, . . . , tn)dW (t1) . . . dW (tn)

with respect to the Gaussian white noise driven by ν, for f ∈ L2(Tn, ν⊗n)

Show that

E
({∫

Tn\Dn

f(t1, t2, . . . , tn)N̄(dt1)N̄(dt2) . . . N̄(dtn)

}2)
= E

({∫
Tn\Dn

f(t1, t2, . . . , tn)W (dt1)W (dt2) . . . W̄ (dtn)

}2)
Hint: use the Wick formula for zero-mean jointly Gaussian random
variables Gk

E
(
G1G2 . . . G2n

)
=

∑
pairings

∏
{k,`}pairs

E
(
GkG`

)
where for an even number of random variables the sum is over the
pairing of {1, 2, . . . , 2n} into n disjoint pairs and for each pairing we
take the product over the pairs of the pair covariance, and E

(
G1G2 . . . G2n+1

)
=

0 when the number of random variables is odd.
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