Fourier-analysis II

Exam, 14.05.2018

- 1. Give the statement of the Riemann-Lebesgue lemma concerning the Fourier-transform of an $L^1(\mathbb{R}^d)$ -function, and give also its proof.
- 2. Which of the following claims are true, and which are false? Explain your answers.
 - (a) If $f \in L^1(\mathbb{R}^d)$, then \hat{f} is continuous.
 - (b) The function $g(x) = e^{-|x|}$, $x \in \mathbb{R}^d$, belongs to $\mathcal{S}(\mathbb{R}^d)$.
 - (c) If $f \in L^p(\mathbb{R}^d)$, $1 \le p \le \infty$, then $f \in \mathcal{S}(\mathbb{R}^d)$.
 - (d) If $f \in L^{\infty}(\mathbb{R}^d)$, then $f \in \mathcal{S}'(\mathbb{R}^d)$, and its distributional Fourier–transofrm $\hat{f} \in L^1(\mathbb{R}^d)$.
- 3. (From homework) Suppose the Fourier-transform of $f \in L^1(\mathbb{R})$ satisfies

$$|\hat{f}(\xi)| \le C(1+|\xi|)^{-1-\alpha}, \, \xi \in \mathbb{R},$$

for some constants $0<\alpha<1$ and $C\geq 0.$ Show that then f satisfies the Hölder–condition

$$|f(x) - f(y)| \le M|x - y|^{\alpha}, \ x, y \in \mathbb{R}.$$

4. Assume that $0 \neq f \in L^1(\mathbb{R}^d)$ and that $\hat{f} = \lambda f$ for some complex constant λ . What can you say of λ ? Can you give an example of a non-zero function f satisfying this relation?

\$ el' \$ 600 (3.00)

