Partial differential equations I

Final exam 2024, March 6.

Lecturer: prof. Matti Lassas

Answer to all four questions below. The exam lasts 120 minutes.

- 1. Give an example of a non-constant function u = u(x, y, t), $u \in C^2(\mathbb{R}^2 \times \mathbb{R})$ that satisfies the wave equation in $\mathbb{R}^2 \times \mathbb{R}$.
- 2. Let $\psi \in C^2(\overline{\Omega})$ be a Neumann eigenfunction of the operator $-\Delta$ in a bounded smooth domain $\Omega \subset \mathbb{R}^n$ corresponding to the eigenvalue $\lambda \in \mathbb{R}$. This means that ψ is a non-zero function that satisfies

$$\begin{split} -\Delta \psi(x) &= \lambda \psi(x), \quad x \in \Omega, \\ \nu \cdot \nabla \psi|_{\partial \Omega} &= 0. \end{split}$$

Prove that $\lambda \geq 0$.

3. Find a function $u(x,y,t)\in C^1(\mathbb{R}\times\mathbb{R}\times\mathbb{R})$ that is a solution of the transport equation

$$\begin{split} \partial_t u(x,y,t) - 2\partial_x u(x,y,t) - \partial_y u(x,y,t) &= 0, \quad (x,y) \in \mathbb{R}^2, \ t \in \mathbb{R}, \\ u(x,y,t)|_{t=0} &= \sin(x). \end{split}$$

4. Let $f:[0,\pi]\to\mathbb{R}$ be a C^2 -function that satisfies $f(0)=f(\pi)=0$ and $f'(0)=f'(\pi)=0$. Let $u\in C^2([0,\pi]\times[0,\infty))$ be a solution of the heat equation

$$\partial_t u(x,t) - \partial_x^2 u(x,t) = 0, \quad x \in [0,\pi], \ t > 0,$$

 $u(x,t)|_{t=0} = f(x), \quad u(x,t)|_{x=0} = 0, \quad u(x,t)|_{x=\pi} = 0.$

Show that

$$\lim_{t \to \infty} u(x, t) = 0$$

for all $x \in [0, \pi]$.

Hint: Consider the sine-Fourier series of f, that is,

$$f(x) = \sum_{k \ge 1} a_k \sin(kx), \quad a_k = \frac{2}{\pi} \int_0^{\pi} \sin(kx) f(x) dx.$$

the exam. Attached is material on Green's formulas which you are allowed to use in